Abstract
After an infection, the immune system generates long-lived memory lymphocytes whose increased frequency and altered state of differentiation enhance host defense against reinfection. Recently, the spatial distribution of memory cells was found to contribute to their protective function. Effector memory CD8+ T cells reside in peripheral tissue sites of initial pathogen encounter, in apparent anticipation of reinfection. Here we show that within lymph nodes (LNs), memory CD8+ T cells were concentrated near peripheral entry portals of lymph-borne pathogens, promoting rapid engagement of infected sentinel macrophages. A feed-forward CXCL9-dependent circuit provided additional chemotactic cues that further increase local memory cell density. Memory CD8+ T cells also produced effector responses to local cytokine triggers, but their dynamic behavior differed from that seen after antigen recognition. These data reveal the distinct localization and dynamic behavior of naive versus memory T cells within LNs and how these differences contribute to host defense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.