Abstract

Many neurotrophic factors have been shown to promote neurite outgrowth by improving the microenvironment that is required for nerve regeneration. However, the delivery of these bioactive agents to the nerve injury site, as well as effective and local release, remains a challenging problem. We have developed a novel composite nerve conduit comprised of poly(lactic acid-caprolactone) (P(LLA-CL)) and nerve growth factor (NGF). This was developed from core-shell structured biodegradable nanofibers, which were fabricated by coaxial electrospinning of P(LLA-CL) for the shell and bovine serum albumin (BSA) or BSA/NGF for the core. In rats, gaps of 10-mm long sciatic nerves were bridged using an autograft, an empty P(LLA-CL) conduit, a NGF injection P(LLA-CL) conduit, a P(LLA-CL)/NGF composite conduit, respectively. Regenerated nerve fibers were harvested and morphological and functional evaluation of nerve regeneration was performed at 12 weeks postsurgery. Although partial biodegradation and small cracks in the conduits were observed, the conduit outlines remained intact for 12 weeks after surgery. Based on functional and histological observations, the number and arrangement of regenerated nerve fibers, myelination, and nerve function reconstruction was similar in the P(LLA-CL)/NGF conduit group to that of the nerve autograft group (p > 0.05), but was significantly greater to the empty P(LLA-CL) and injection NGF P(LLA-CL) conduit groups (both p < 0.05). Therefore, the composite P(LLA-CL)/NGF conduit, which exhibited favorable mechanical properties and biocompatibility, could effectively promote sciatic nerve regeneration in rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.