Abstract
Humans can rapidly identify materials, such as wood or leather, even within a complex visual scene. Given a single image, one can easily identify the underlying "stuff," even though a given material can have highly variable appearance; fabric comes in unlimited variations of shape, pattern, color, and smoothness, yet we have little trouble categorizing it as fabric. What visual cues do we use to determine material identity? Prior research suggests that simple "texture" features of an image, such as the power spectrum, capture information about material properties and identity. Few studies, however, have tested richer and biologically motivated models of texture. We compared baseline material classification performance to performance with synthetic textures generated from the Portilla-Simoncelli model and several common image degradations. The textures retain statistical information but are otherwise random. We found that performance with textures and most degradations was well below baseline, suggesting insufficient information to support foveal material perception. Interestingly, modern research suggests that peripheral vision might use a statistical, texture-like representation. In a second set of experiments, we found that peripheral performance is more closely predicted by texture and other image degradations. These findings delineate the nature of peripheral material classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.