Abstract

In several species, including humans, the dentate granule cell layer (GCL) of the hippocampus exhibits neurogenesis throughout adult life. The ability to regulate adult neurogenesis pharmacologically may be of therapeutic value as a mechanism for replacing lost neurons. Insulin-like growth factor-I (IGF-I) is a growth-promoting peptide hormone that has been shown to have neurotrophic properties. The relationship between IGF-I and adult hippocampal neurogenesis is to date unknown. The aim of this study was to investigate the effect of the peripheral administration of IGF-I on cellular proliferation in the dentate subgranular proliferative zone, which contains neuronal progenitor cells, and on the subsequent migration and differentiation of progenitor cells within the GCL. Using bromodeoxyuridine (BrdU) labeling, we found a significant increase of BrdU-immunoreactive progenitors in the GCL after 6 d of peripheral IGF-I administration. To determine the cell fate in progenitor progeny, we characterized the colocalization of BrdU-immunolabeled cells with cell-specific markers. In animals treated with IGF-I for 20 d, BrdU-positive cells increased significantly. Furthermore, the fraction of newly generated neurons in the GCL increased, as evaluated by the neuronal markers Calbindin D(28K), microtubule-associated protein-2, and NeuN. There was no difference in the fraction of newly generated astrocytes. Thus, our results show that peripheral infusion of IGF-I increases progenitor cell proliferation and selectively induces neurogenesis in the progeny of adult neural progenitor cells. This corresponds to a 78 +/- 17% (p < 0.001) increase in the number of new neurons in IGF-I-treated animals compared with controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.