Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose pathobiology associates with peripheral blood immune cell levels and activation patterns in an age and sex-dependent manner. This study's objective was to identify immune profile associations with ALS progression, whether the associations are age and sex-specific, and whether immune profiles can predict a future disease course. Flow cytometry immune profiles (a combination of 22 peripheral blood immune markers) were generated for 241 participants with ALS and linked to ALS progression, using progression-free survival, which is a composite combining the revised ALS Functional Rating Scale and survival. Participants were first grouped by immune profiles using unsupervised hierarchical clustering, and clusters were associated with subsequent progression-free survival. Next, individual immune markers were associated with progression-free survival using least absolute shrinkage and selection operator-Cox regression. Analyses were stratified by age and sex to identify demographic-specific immune mechanisms. Finally, random forest determined the predictive power of immune profiles on ALS progression in the whole population and again stratified by age and sex. Progression-free survival differed between clusters of participants with similar immune profiles, particularly reduced natural killer (NK)-cell activation associated with slower progression. Individual markers such as neutrophil levels and NK-cell NKp46 expression associated with faster ALS progression while overall NK-cell levels and NK-cell subpopulations associated with slower progression; the strength of these associations varied by age and sex. Adding these immune markers to prediction models dramatically increased short-term prediction compared with routine clinical prognostic variables alone, and the addition of NK-cell markers further improved the prediction accuracy in female participants. Specific immune profiles likely contribute to ALS progression in an age and sex-dependent manner, and peripheral immune markers enhance the prediction of short-term clinical outcomes. These findings suggest a complex milieu of immune profiles associated with ALS progression, and more detailed immunophenotyping in ALS will facilitate personalized immunotherapeutics in ALS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call