Abstract

The metathoracic fast extensor tibiae (FETi) motor neurone of locusts is unusual amongst insect motor neurones because it makes output connections within the central nervous system as well as in the periphery. It makes excitatory chemical synaptic connections to most if not all of the antagonist flexor tibiae motor neurones. The gain of the FETi-flexor connection is dependent on the peripheral conditions at the time of the FETi spike. This dependency has two aspects. First, sensory input resulting from the extensor muscle contraction can sum with the central excitatory postsynaptic potential (EPSP) to augment its falling phase if the tibia is restrained in the flexed position (initiating a tension-dependent reflex) or is free to extend (initiating a movement-dependent resistance reflex). This effect is thus due to simple postsynaptic summation of the central EPSP with peripheral sensory input. Second, the static tibial position at the time of the FETi spike can change the amplitude of the central EPSP, in the absence of any extensor muscle contraction. The EPSP can be up to 30 % greater in amplitude if FETi spikes with the tibia held flexed rather than extended. The primary sense organ mediating this effect is the femoral chordotonal organ. Evidence is presented suggesting that the mechanism underlying this change in gain may be specifically localised to the FETi-flexor connection, rather than being due to general position-dependent sensory feedback summing with the EPSP. The change in the amplitude of the central EPSP is probably not caused by general postsynaptic summation with tonic sensory input, since a diminution in the amplitude of the central EPSP caused by tibial extension is often accompanied by overall tonic excitation of the flexor motor neurone. Small but significant changes in the peak amplitude of the FETi spike have a positive correlation with changes in the EPSP amplitude, suggesting a likely presynaptic component to the mechanism of gain control. The change in amplitude of the EPSP can alter its effectiveness in producing flexor motor output and, thus, has functional significance. The change serves to augment the effectiveness of the FETi-flexor connection when the tibia is fully flexed, and thus to increase its adaptive advantage during the co-contraction preceding a jump or kick, and to reduce the effectiveness of the connection when the tibia is partially or fully extended, and thus to reduce its potentially maladaptive consequences during voluntary extension movements such as thrusting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call