Abstract

IntroductionGenome-wide association studies consistently show that single nucleotide polymorphisms (SNPs) in the complement receptor 1 (CR1) gene modestly but significantly alter Alzheimer's disease (AD) risk. Follow-up research has assumed that CR1 is expressed in the human brain despite a paucity of evidence for its function there. Alternatively, erythrocytes contain >80% of the body's CR1, where, in primates, it is known to bind circulating pathogens. MethodsMultidisciplinary methods were employed. ResultsConventional Western blots and quantitative polymerase chain reaction failed to detect CR1 in the human brain. Brain immunohistochemistry revealed only vascular CR1. By contrast, erythrocyte CR1 immunoreactivity was readily observed and was significantly deficient in AD, as was CR1-mediated erythrocyte capture of circulating amyloid β peptide. CR1 SNPs associated with decreased erythrocyte CR1 increased AD risk, whereas a CR1 SNP associated with increased erythrocyte CR1 decreased AD risk. DiscussionSNP effects on erythrocyte CR1 likely underlie the association of CR1 polymorphisms with AD risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.