Abstract

The endocannabinoid system is an important player in energy metabolism by regulating appetite, lipolysis, and energy expenditure. Chronic blockade of the cannabinoid 1 receptor (CB1R) leads to long-term maintenance of weight loss and reduction of dyslipidemia in experimental and human obesity. The molecular mechanism by which CB1R blockade reverses dyslipidemia in obesity has not yet been clarified. In this study, we showed that CB1R blockade with the systemic CB1R blocker rimonabant enhanced whole-body energy expenditure and activated brown adipose tissue (BAT), indicated by increased expression of genes involved in BAT thermogenesis and decreased lipid droplet size in BAT. This was accompanied by selectively increased triglyceride (TG) uptake by BAT and lower plasma TG levels. Interestingly, the effects on BAT activation were still present at thermoneutrality and could be recapitulated by using the strictly peripheral CB1R antagonist AM6545, indicating direct peripheral activation of BAT. Indeed, CB1R blockade directly activated T37i brown adipocytes, resulting in enhanced uncoupled respiration, most likely via enhancing cAMP/PKA signaling via the adrenergic receptor pathway. Our data indicate that selective targeting of the peripheral CB1R in BAT has therapeutic potential in attenuating dyslipidemia and obesity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.