Abstract

The major obstacle to successful ABO blood group-incompatible kidney transplantation (ABOi KT) is antibody-mediated rejection (AMR). This study aimed to investigate transcriptional profiles through RNA sequencing and develop a minimally invasive diagnostic tool for discrimination between accommodation and early acute AMR in ABOi KT. Twenty-eight ABOi KT patients were selected: 18 with accommodation and 10 with acute AMR at the 10th day posttransplant protocol biopsy. Complete transcriptomes of their peripheral blood were analyzed by RNA sequencing. Candidate genes were selected by bioinformatics analysis, validated with quantitative polymerase chain reaction, and used to develop a classification model to diagnose accommodation. A total of 1385 genes were differentially expressed in accommodation compared with in AMR with P-adjusted<.05. Functional annotation and gene set enrichment analysis identified several immune-related and immunometabolic pathways. A 5-gene classification model including COX7A2L, CD69, CD14, CFD, and FOXJ3 was developed by logistic regression analysis. The model was further validated with an independent cohort and discriminated between accommodation and AMR with 92.7% sensitivity, 85.7% specificity, and 91.7% accuracy. Our study suggests that a classification model based on peripheral blood transcriptomics may allow minimally invasive diagnosis of acute AMR vs accommodation and subsequent patient-tailored immunosuppression in ABOi KT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.