Abstract
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+) dependent enzymes that regulate cellular functions through deacetylation of protein targets. They have roles in both the periphery and central nervous system and have been implicated in depression biology. A recent genome-wide association study has identified a locus for major depression in the Sirtuin1 gene (SIRT1) and lower blood levels of SIRT1 mRNA in patients with depression have also been observed in two studies. To our knowledge, no studies have examined the effect of treatment on SIRT1 levels in patients with depression. We therefore examined SIRT1 mRNA levels in a well characterised group of patients with depression, compared to healthy controls, and characterised the effects of a course of electroconvulsive therapy (ECT) on peripheral blood SIRT1 mRNA. Depressed patients (n = 91) were matched to healthy controls (n = 85) on the basis of age and sex. In line with previous studies, blood SIRT1 mRNA levels were lower in depressed patients in comparison to controls (p = 0.005). However, ECT had no effect on SIRT1 levels (p = 0.67). There was no relationship between baseline pre-ECT SIRT1 levels and depression severity, change in mood scores, suicidality, depression polarity, presence of psychosis, or response to treatment. There was a trend for a negative association between an increase in SIRT1 mRNA and a decrease in HAM-D24 scores in ECT responders and remitters. These results indicate that reduced peripheral blood SIRT1 mRNA could be a trait feature of depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.