Abstract
T cells are postulated to contribute to the injury of the oligodendrocyte-myelin complex underlying the demyelinating disease multiple sclerosis (MS). The apparent lack of class I or II major histocompatibility complex (MHC) expression in situ on human oligodendrocytes and the consistent failure to identify a universal myelin antigen in MS suggest that the immune damage might be mediated by effector T cells that are capable of reacting in an antigen-nonspecific and possibly MHC-unrestricted manner, such as T cells expressing the gamma-delta T-cell receptor. Since gamma-delta T cells are reported to be present in MS plaques and an increased number are found in the cerebrospinal fluid of patients with MS, we directly examined whether gamma-delta T cells are capable of inducing injury to human oligodendrocytes. We found, using a 6-hour 51Cr release assay, that oligodendrocytes cultured from surgically resected human brain specimens were effectively lysed in a dose-dependent manner by human gamma-delta T cells (28 +/- 5% mean specific lysis, n = 6, at an effector-target ratio of 20:1). Although heat shock protein HSP72, a putative gamma-delta T-cell recognition molecule, could be induced in vitro in our oligodendrocytes, an antibody to HSP72 did not inhibit gamma-delta T cell-mediated lysis of oligodendrocytes. These results suggest that gamma-delta T cells gaining entry into the central nervous system may be deleterious to oligodendrocytes and thus may contribute to the pathogenesis of MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.