Abstract

Axon ensheathment is fundamental for fast impulse conduction and the normal physiological functioning of the nervous system. Defects in axonal insulation lead to debilitating conditions, but, despite its importance, the molecular players responsible are poorly defined. Here, we identify RalA GTPase as a key player in axon ensheathment in Drosophila larval peripheral nerves. We demonstrate through genetic analysis that RalA action through the exocyst complex is required in wrapping glial cells to regulate their growth and development. We suggest that the RalA-exocyst pathway controls the targeting of secretory vesicles for membrane growth or for the secretion of a wrapping glia-derived factor that itself regulates growth. In summary, our findings provide a new molecular understanding of the process by which axons are ensheathed in vivo, a process that is crucial for normal neuronal function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.