Abstract

Promoting neural stem cells (NSCs) survival in the harsh niche is essential to cell replacement therapy for various central nervous system diseases. As an integral component of the extracellular matrix, Periostin (POSTN) has been shown to protect various cell types from hypoxia-ischemia damage. This study aimed to investigate the neuroprotective effects of POSTN on NSCs injury induced by oxygen and glucose deprivation (OGD). Under challenge with OGD, cell viability significantly decreased in cultured mouse NSCs, and supplement POSTN rescued cell viability in a concentration-dependent manner, as shown by CCK-8. TUNEL and propidium iodide/Hoechst staining showed that POSTN pretreatment protected NSCs against OGD-induced apoptosis. Western blot assay demonstrated that POSTN pretreatment inhibited cleavage of caspase-3 and restored the balance of Bcl-2/Bax. And pretreatment with cilengitide (an inhibitor of POSTN receptors) abolished the protective effect of POSTN. Further investigation demonstrated that supplement POSTN inhibited phosphorylation of p38 in a concentration-dependent manner. Moreover, the neuroprotective effect of POSTN was hampered by anisomycin, an activator of p38. We conclude that POSTN pretreatment in cultured mouse NSCs mitigated OGD-induced cell death, and inhibition of the p38 MAPK pathway might be one of the underlying mechanisms. Our findings may provide a novel strategy for enhancing both endogenous and exogenous NSCs survival after ischemia and hypoxia injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call