Abstract

BackgroundSpontaneous restoration of large bone defects remains a challenge under infections, tumors, and crushing conditions. Current stem cell-based therapies for treating bone defects need improvement, because the used stem cells are isolated by a traditional protocol, which is based on their properties of in-vitro plastic adherence and fibroblastic colony formation. The stem cells isolated by the traditional protocol belong to a multicellular type mixture, individual cells vary in proliferative and osteogenic potential. Thus, developing a protocol capable of isolating stem cell subset with higher purity is required and urgent. AimThis study aimed to sort a subpopulation of stem cells from periosteum using flow cytometry (named as FC-PSCs), and evaluate the proliferative and osteogenic capacity of FC-PSCs in-vitro, and then establish a new stem cell-based therapies for treating bone defects by delivering the FC-PSCs within platelet-rich plasma (PRP). MethodsMouse periosteum was used to sort FC-PSCs using flow cytometry with CD45-TER119-TIE2-ITGAV+CD90 + 6C3-CD105- markers, or isolate periosteum-derived stem cells with the traditional protocol (TP-PSCs) as control. After evaluating the FC-PSCs proliferation and osteogenic differentiation in-vitro as well as the promotive efficacy of platelet-rich plasma (PRP) on FC-PSCs proliferation and osteogenic differentiation, the FC-PSCs were delivered into the femoral epiphysis bone defect site of a mouse model by platelet-rich plasma (PRP). At postoperative 14 or 28 days, these mice were euthanized for harvest the femur specimens for micro-CT, histological evaluation. ResultsIn-vitro results determined that the FC-PSCs showed more capacity for proliferation and osteogenic differentiation compared with the TP-PSCs. In addition, in-vitro results showed the promotive efficacy of PRP on FC-PSCs proliferation and osteogenic differentiation. In-vivo results showed that the FC-PSCs delivered by PRP was able to facilitate the repair of bone defects by stimulating new bone formation and remodeling. ConclusionFC-PSCs delivered by PRP enhance the repair of bone defects by stimulating new bone formation and remodeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.