Abstract

BackgroundPostoperative pulmonary complications (PPCs) increase morbidity and mortality of surgical patients, duration of hospital stay and costs. Postoperative atelectasis of dorsal lung regions as a common PPC has been described before, but its clinical relevance is insufficiently examined. Pulmonary electrical impedance tomography (EIT) enables the bedside visualization of regional ventilation in real-time within a transversal section of the lung. Dorsal atelectasis or effusions might cause a ventral redistribution of ventilation. We hypothesized the existence of ventral redistribution in spontaneously breathing patients during their recovery from abdominal and peripheral surgery and that vital capacity is reduced if regional ventilation shifts to ventral lung regions.MethodsThis prospective observational study included 69 adult patients undergoing elective surgery with an expected intermediate or high risk for PPCs. Patients undergoing abdominal and peripheral surgery were recruited to obtain groups of equal size. Patients received general anesthesia with and without additional regional anesthesia. On the preoperative, the first and the third postoperative day, EIT was performed at rest and during spirometry (forced breathing). The center of ventilation in dorso-ventral direction (COVy) was calculated.ResultsBoth groups received intraoperative low tidal volume ventilation. Postoperative ventral redistribution of ventilation (forced breathing COVy; preoperative: 16.5 (16.0–17.3); first day: 17.8 (16.9–18.2), p < 0.004; third day: 17.4 (16.2–18.2), p = 0.020) and decreased forced vital capacity in percentage of predicted values (FVC%predicted) (median: 93, 58, 64%, respectively) persisted after abdominal surgery. In addition, dorsal to ventral shift was associated with a decrease of the FVC%predicted on the third postoperative day (r = − 0.66; p < 0.001). A redistribution of pulmonary ventilation was not observed after peripheral surgery. FVC%predicted was only decreased on the first postoperative day (median FVC%predicted on the preoperative, first and third day: 85, 81 and 88%, respectively). In ten patients occurred pulmonary complications after abdominal surgery also in two patients after peripheral surgery.ConclusionsAfter abdominal surgery ventral redistribution of ventilation persisted up to the third postoperative day and was associated with decreased vital capacity. The peripheral surgery group showed only minor changes in vital capacity, suggesting a role of the location of surgery for postoperative redistribution of pulmonary ventilation.Trial registrationThis prospective observational single centre study was submitted to registration prior to patient enrollment at ClinicalTrials.gov (NCT02419196, Date of registration: December 1, 2014). Registration was finalized at April 17, 2015.

Highlights

  • Postoperative pulmonary complications (PPCs) increase morbidity and mortality of surgical patients, duration of hospital stay and costs

  • Within the respective cohorts 34 and 30 patients were evaluated for PPCs until discharge or day 7

  • Postoperative atelectasis of dependent lung regions persisting for days was found by computed tomography (CT) studies [4, 5] and the extent of atelectasis was negatively correlated with forced vital capacity [5]

Read more

Summary

Introduction

Postoperative pulmonary complications (PPCs) increase morbidity and mortality of surgical patients, duration of hospital stay and costs. Postoperative pulmonary complications (PPCs), defined as atelectasis, pleural effusion, respiratory infection, respiratory failure, pneumothorax, bronchospasm or aspiration pneumonitis, increase morbidity and mortality in surgical patients [1] and lead to longer hospitalization [2] and higher costs [3]. Dorsal atelectasis of about 1– 2% of the area of a caudal computed tomography (CT) scan was detected in patients after induction of anesthesia for lower abdominal surgery. These effects persisted during the first postoperative days and were accompanied by reduced forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and impaired arterial oxygenation [4, 5]. The restricted time-resolution is another limitation of CT in the examination of dynamic changes during breathing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call