Abstract

BackgroundIn morbidly obese patients undergoing laparoscopic bariatric surgery, the combination of obesity-related comorbidities, pneumoperitoneum and extreme posture changes constitutes a high risk of perioperative hemodynamic complications. Thus, an advanced hemodynamic monitoring including continuous cardiac index (CI) assessment is desirable. While invasive catheterization may bear technical difficulties, transesophageal echocardiography is contraindicated due to the surgical procedure. Evidence on the clinical reliability of alternative semi- or non-invasive cardiac monitoring devices is limited. The aim was to compare the non-invasive vascular unloading to a semi-invasive pulse contour analysis reference technique for continuous CI measurements in bariatric surgical patients.MethodsThis prospective observational study included adult patients scheduled for elective, laparoscopic bariatric surgery after obtained institutional ethics approval and written informed consent. CI measurements were performed using the vascular unloading technique (Nexfin®) and semi-invasive reference method (FloTrac™). At 10 defined measurement time points, the influence of clinically indicated body posture changes, passive leg raising, fluid bolus administration and pneumoperitoneum was evaluated pre- and intraoperatively. Correlation, Bland-Altman and concordance analyses were performed.ResultsSixty patients (mean BMI 49.2 kg/m2) were enrolled into the study and data from 54 patients could be entered in the final analysis. Baseline CI was 3.2 ± 0.9 and 3.3 ± 0.8 l/min/m2, respectively. Pooled absolute CI values showed a positive correlation (rs = 0.76, P < 0.001) and mean bias of of − 0.16 l/min/m2 (limits of agreement: − 1.48 to 1.15 l/min/m2) between the two methods. Pooled percentage error was 56.51%, missing the criteria of interchangeability (< 30%). Preoperatively, bias ranged from − 0.33 to 0.08 l/min/m2 with wide limits of agreement. Correlation of CI was best (rs = 0.82, P < 0.001) and percentage error lowest (46.34%) during anesthesia and after fluid bolus administration. Intraoperatively, bias ranged from − 0.34 to − 0.03 l/min/m2 with wide limits of agreement. CI measurements correlated best during pneumoperitoneum and after fluid bolus administration (rs = 0.77, P < 0.001; percentage error 35.95%). Trending ability for all 10 measurement points showed a concordance rate of 85.12%, not reaching the predefined Critchley criterion (> 92%).ConclusionNon-invasive as compared to semi-invasive CI measurements did not reach criteria of interchangeability for monitoring absolute and trending values of CI in morbidly obese patients undergoing bariatric surgery.Trial registrationThe study was registered retrospectively on June 12, 2017 with the registration number NCT03184272.

Highlights

  • In morbidly obese patients undergoing laparoscopic bariatric surgery, the combination of obesityrelated comorbidities, pneumoperitoneum and extreme posture changes constitutes a high risk of perioperative hemodynamic complications

  • Sixty patients were enrolled into the study and data from 54 patients could be entered in the final analysis

  • Correlation of cardiac index (CI) was best and percentage error lowest (46.34%) during anesthesia and after fluid bolus administration

Read more

Summary

Introduction

In morbidly obese patients undergoing laparoscopic bariatric surgery, the combination of obesityrelated comorbidities, pneumoperitoneum and extreme posture changes constitutes a high risk of perioperative hemodynamic complications. The aim was to compare the non-invasive vascular unloading to a semi-invasive pulse contour analysis reference technique for continuous CI measurements in bariatric surgical patients. In the clinical setting of laparoscopic bariatric surgery, the combination of obesity-related physiological alterations, comorbidities, and the surgical procedure per se including the use of pneumoperitoneum (PP) and extreme changes in patient positioning contribute to an increased risk of perioperative hemodynamic complications [4, 5]. Nowadays a number of monitoring techniques, invasive to non-invasive, continuous or intermittent, are available for cardiac index (CI) assessment such as pulmonary artery catheter, pulse-contour cardiac output (CO) monitoring or transesophageal echocardiography [6]. Catheterization of a femoral or brachial arterial line for pulse-contour analysis devices may bear technical difficulties due to anatomical reasons in these patients [7]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call