Abstract

Simple SummaryThis study aimed to investigate the use of electroencephalography (EEG) and EEG-derived (processed) indices for detecting brain activity changes perioperatively in 12 anesthetized adult horses subjected to various surgery. Frontal electrodes together with Sedline/Root monitor were used on these horses from soon after anesthesia induction and continued until the horse first attempted to stand in recovery. The EEG waves were characterized by low-frequency high amplitude alpha, theta, and alpha waves during the isoflurane maintenance and surgery, which is commonly observed in profound anesthesia. The processed EEG indices including Patient State Index, Burst Suppression Ratio, and 95% Spectral Edge Frequency changed significantly between the stages (induction, surgery, and recovery) of anesthesia. Collectively, the presence of the slow EEG wave activities and the presence of burst suppression implies that these horses were profoundly unconscious during the anesthesia. We concluded that the use of EEG in conjunction with traditional cardiorespiratory monitoring provides clinically relevant information about perioperative brain state changes in the anesthetized horses.This study aimed to investigate the use of electroencephalography (EEG) for detecting brain activity changes perioperatively in anesthetized horses subjected to surgery. Twelve adult horses undergoing various surgeries were evaluated after premedication with xylazine and butorphanol, induction with ketamine, midazolam, and guaifenesin, and maintenance with isoflurane. The frontal EEG electrodes were placed after the horse was intubated and mechanically ventilated. The EEG data were collected continuously from Stage (S)1—transition from induction to isoflurane maintenance, S2—during surgery, S3—early recovery before xylazine sedation (0.2 mg kg IV), and S4—recovery after xylazine sedation. The Patient State Index (PSI), (Burst) Suppression Ratio (SR), and 95% Spectral Edge Frequency (SEF95) were compared across the stages. The PSI was lowest in S2 (20.8 ± 2.6) and increased to 30.0 ± 27.7 (p = 0.005) in S3. The SR increased from S1 (5.5 ± 10.7%) to S3 (32.7 ± 33.8%, p = 0.0001). The spectral power analysis showed that S3 had a significantly higher content of delta wave activity (0.1–4 Hz) in the EEG and lower relative power in the 3 Hz to 15 Hz range when compared to S1 and S2. A similar result was observed in S4, but the lower power was in a narrower range, from 3 Hz to 7 Hz, which indicate profound central nervous system depression potentiated by xylazine, despite the cessation of isoflurane anesthesia. We concluded that the use of EEG provides clinically relevant information about perioperative brain state changes of the isoflurane-anesthetized horse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call