Abstract

At the end of the 70s, Gross and Deligne conjectured that periods of geometric Hodge structures with multiplication by an abelian number field are products of values of the gamma function at rational arguments, with exponents determined by the Hodge decomposition. We prove an alternating variant of this conjecture for smooth projective varieties acted upon by an automorphism of finite order, thus improving previous results of Maillot and R\"ossler. The proof relies on a product formula for periods of regular singular connections due to Saito and Terasoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.