Abstract
Nanoparticle bioceramics are being investigated for biomedical applications. We fabricated a regenerative scaffold comprising type I collagen and beta-tricalcium phosphate (β-TCP) nanoparticles. Fibroblast growth factor-2 (FGF-2) is a bioeffective signaling molecule that stimulates cell proliferation and wound healing. This study examined the effects, on bioactivity, of a nano-β-TCP/collagen scaffold loaded with FGF-2, particularly on periodontal tissue wound healing. Beta-tricalcium phosphate was pulverized into nanosize particles (84 nm) and was then dispersed. A nano-β-TCP scaffold was prepared by coating the surface of a collagen scaffold with a nanosize β-TCP dispersion. Scaffolds were characterized using scanning electron microscopy, compressive testing, cell seeding and rat subcutaneous implant testing. Then, nano-β-TCP scaffold, nano-β-TCP scaffold loaded with FGF-2 and noncoated collagen scaffold were implanted into a dog one-wall infrabony defect model. Histological observations were made at 10 d and 4 wk postsurgery. Scanning electron microscopy images show that TCP nanoparticles were attached to collagen fibers. The nano-β-TCP scaffold showed higher compressive strength and cytocompatibility compared with the noncoated collagen scaffold. Rat subcutaneous implant tests showed that the DNA contents of infiltrating cells in the nano-β-TCP scaffold and the FGF-2-loaded scaffold were approximately 2.8-fold and 3.7-fold greater, respectively, than in the collagen scaffold. Histological samples from the periodontal defect model showed about five-fold greater periodontal tissue repair following implantation of the nano-β-TCP scaffold loaded with FGF-2 compared with the collagen scaffold. The β-TCP nanoparticle coating strongly improved the collagen scaffold bioactivity. Nano-β-TCP scaffolds containing FGF-2 are anticipated for use in periodontal tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.