Abstract

ObjectiveThis study aimed to analyze the ability of G-CSF and TGF-β1 to mobilize periodontal ligament stem cells to obtain populations with better potential for proliferation and osteogenic differentiation. DesignPrimary cultures were established from the periodontal ligament of Wistar rats. After a cell migration assay, four experimental groups were obtained: PDLSC, composed of the primary culture, non-mobilized cells; MPDLSC, the spontaneously migrated cells; MPDLSC-GCSF, the cells mobilized with G-CSF; and MPDLSC-TGF-β1, the cells mobilized with TGF-β1. The expression of mesenchymal stem cell markers was assessed by flow cytometry. Clonogenicity, viability, proliferative potential, and osteogenic differentiation capacity were also analyzed. ResultsAll the study groups expressed well-known mesenchymal stem cell markers and exhibited clonogenic capacity. The higher proliferation potential was seen in the PDLSC and MPDLSC groups, while the MPDLSC and MPDLSC-TGFβ1 groups showed a higher number of mineralized deposits in vitro and higher ALP activity after osteogenic differentiation induction. Cells of all the groups also expressed mRNA of genes associated with osteogenic differentiation without previous induction. ConclusionsBoth agents were able to mobilize stem cells from the periodontal ligament, but G-CSF did not show an advantage, whereas TGF-β1 appears to direct the cells towards a state of increased osteogenic differentiation. Furthermore, spontaneous cell migration through a membrane was sufficient to enrich the cell population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call