Abstract
The Floquet theorem allows one to reformulate periodic time-dependent problems such as the interaction of a many-body system with a laser field in terms of time-independent, field-dressed states, also known as Floquet states. If this was possible for density-functional theory as well, one could reduce in such cases time-dependent density-functional theory to a time-independent Floquet density-functional theory. We analyze under which conditions the Floquet theorem is applicable in a density-functional framework. By employing numerical ab initio solutions of the interacting time-dependent Schr\"odinger equation with time-periodic external potentials we show that the exact effective potential in the corresponding Kohn-Sham equation is not unconditionally periodic. Whenever several Floquet states in the interacting system are involved in a physical process the corresponding Hartree-exchange-correlation potential is not periodic with the external frequency only. Using an analytically solvable example we demonstrate that, in general, the periodicity of the time-dependent Kohn-Sham Hamiltonian cannot be restored by choosing a different initial state. Only if the external periodic potential is sufficiently weak such that the initial state of the interacting system evolves adiabatically to a single, field-dressed state, the resulting Kohn-Sham system admits the application of the Floquet theorem.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.