Abstract

AbstractBott periodicity for the unitary and symplectic groups is fundamental to topologicalK-theory. Analogous to unitary topologicalK-theory, for algebraicK-groups with finite coefficients, similar results are consequences of the Milnor and Bloch-Kato conjectures, affirmed by Voevodsky, Rost and others. More generally, we prove that periodicity of the algebraicK-groups for any ring implies periodicity for the hermitianK-groups, analogous to orthogonal and symplectic topologicalK-theory.The proofs use in an essential way higherKSC-theories, extending those of Anderson and Green. They also provide an upper bound for the higher hermitianK-groups in terms of higher algebraicK-groups.We also relate periodicity to étale hermitianK-groups by proving a hermitian version of Thomason's étale descent theorem. The results are illustrated in detail for local fields, rings of integers in number fields, smooth complex algebraic varieties, rings of continuous functions on compact spaces, and group rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.