Abstract
Incipient fault detection of rolling bearings is a challenging task since the weak fault features are disturbed by heavy background noise. This paper develops a periodicity-enhanced sparse representation method to address this issue. Firstly, periodicity-enhanced basis pursuit denoising (PBPD) is proposed by the theoretical derivation. Fault proportion is defined to quantify the single fault severity of sparse signals, then a periodicity-decision criterion for determining the optimal potential fault period is designed to periodically filter the last sparse signal. Secondly, the suitable linear transformation for PBPD is investigated in comparison and maximal overlapping discrete wavelet packet transform is adopted eventually. Thirdly, adaptive selection strategies are developed for the key parameters of PBPD. Simulations and experimental verifications demonstrate PBPD’s excellent performance in rolling bearing incipient fault detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.