Abstract
We apply a machine learning algorithm called XGBoost to explore the periodicity of two radio sources: PKS 1921-293 (OV 236) and PKS 2200+420 (BL Lac), both radio frequency datasets obtained from University of Michigan Radio Astronomy Observatory (UMRAO), at 4.8 GHz, 8.0 GHz, and 14.5 GHz, between 1969 to 2012. From this methods, we find that the XGBoost provides the opportunity to use a machine learning based methodology on radio datasets and to extract information with strategies quite different from those traditionally used to treat time series, as well as to obtain periodicity through the classification of recurrent events. The results were compared with other methods that examined the same datasets and exhibit a good agreement with them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.