Abstract

We study the dynamics of three planar, noninvertible maps which rotate and fold the plane. Two maps are inspired by real-world applications whereas the third map is constructed to serve as a toy model for the other two maps. The dynamics of the three maps are remarkably similar. A stable fixed point bifurcates through a Hopf–Neĭmark–Sacker which leads to a countably infinite set of resonance tongues in the parameter plane of the map. Within a resonance tongue a periodic point can bifurcate through a period-doubling cascade. At the end of the cascade we detect Hénon-like attractors which are conjectured to be the closure of the unstable manifold of a saddle periodic point. These attractors have a folded structure which can be explained by means of the concept of critical lines. We also detect snap-back repellers which can either coexist with Hénon-like attractors or which can be formed when the saddle-point of a Hénon-like attractor becomes a source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.