Abstract

Abstract A new fractional-order current-controlled memristor is proposed by the fact of the memory loss. Excited by sinusoidal current, the generalized hysteresis loops of the new fractional-order memristor are no longer symmetrical to the origin and the time to reach the steady state is longer than the integer-order memristor’s. The dynamical behaviors of a new fractional-order memristive circuit system whose state variables have different derivation orders are investigated by theoretical analyses and simulated numerically. It is shown that the new fractional-order memristive circuit system goes into chaos by period-doubling bifurcation; the periodic windows are induced by the discontinuous change of derivative order between variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.