Abstract

In this paper we examine in detail the effects of forcing the thermokinetic or the chain-thermal model of hydrocarbon oxidation (proposed by B. F. Gray and C. H. Yang) in a Continuously Stirred Tank Reactor (CSTR). Here, the reaction has been subjected to periodic modulation of the input and output flows of chemicals. This investigation has uncovered rich non-linear dynamical characteristics including primary resonances, super and sub-harmonic resonances, quasi-periodic solutions and chaotic oscillations. These regions of chaos are normally interrupted by windows of periodic behaviour. The transitions to chaos were mainly found to be of three types: Feigenbaum period-doubling cascade, Ruelle-Takens-Newhouse approach through quasi-periodicity, and intermittency. The presence of these chaotic solutions was confirmed by computing the Lyapunov exponents. The results presented here are of potential benefit to industrial practice, since they show great increases in product selectivity when appropriate operating conditions are chosen in this forcing strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.