Abstract

We propose a generic model of driven DNA under the influence of an oscillatory force of amplitude F and frequency ν and show the existence of a dynamical transition for a chain of finite length. We find that the area of the hysteresis loop, A_{loop}, scales with the same exponents as observed in a recent study based on a much more detailed model. However, towards the true thermodynamic limit, the high-frequency scaling regime extends to lower frequencies for larger chain length L and the system has only one scaling (A_{loop}≈ν^{-1}F^{2}). Expansion of an analytical expression for A_{loop} obtained for the model system in the low-force regime revealed that there is a new scaling exponent associated with force (A_{loop}≈ν^{-1}F^{2.5}), which has been validated by high-precision numerical calculation. By a combination of analytical and numerical arguments, we also deduce that for large but finite L, the exponents are robust and independent of temperature and friction coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call