Abstract

A hybrid mathematical model of endocrine regulation obtained by augmenting the classical continuous Smith model with a pulse-modulated feedback to describe episodic (pulsatile) secretion is considered. Conditions for existence and local orbital stability of periodical solutions with m impulses in the least period ( m-cycles) are derived. An important implication of the performed analysis is that the nonlinear dynamics of the pulse-modulated system and not the delay itself cause the sustained closed-loop oscillations. Furthermore, simulation and bifurcation analysis indicate that increasing the time delay in the system in hand typically, but not always, leads to less complex dynamic pattern in the closed-loop system by giving rise to stable cycles of lower periodicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.