Abstract
Several hamster strains are commonly used as models for cardiomyopathic phenotypes evolving toward heart failure. However, little is known about heart rate variability (HRV) in this species. Prolonged surface ECG recording, a prerequisite to HRV studies, can be obtained either by telemetry or by restraints. Here, we performed long time ECG recording using telemetry on young adult Syrian hamsters and we analyzed time series of interbeat intervals. Standard statistics showed that the mean of normal R-R intervals slightly increased with age, with standard deviation of normal R-R intervals remaining stable over time. However, time domain analysis using Poincaré plots revealed dynamic changes in the HRV. Analysis of frequency domains revealed that the ratio of spectral components (low frequency/high frequency) exhibited a maturation pattern. Thus refined analysis of HRV revealed a more complex pattern than common statistical analysis would translate. Unlike other rodents, hamsters display a great spontaneous variability of their heart rate. As the complexity canvas of HRV might be the consequence of extracardiac regulation factors, we assessed the sympathovagal balance in both time and frequency domain of heart rate. Pharmacological tests revealed that both sympathetic and vagal tones contribute to HRV in Syrian hamsters. Thus Syrian hamsters have a broad intrinsic HRV with large influences of the neurovegetative system. However, the influence of the previous beat seems to prevail over the autonomic oscillators. These animals present a high sensitivity to artificially altered cardiac regulation and might be great models for the diagnosis of early alterations in the HRV related to pathology. Therefore, Syrian hamsters represent a unique model for HRV studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.