Abstract

Surface morphology is a key factor that might significantly influence the properties of biomaterials. In this study, periodic surface-ring structures have been constructed for calcium phosphate thin films via biomineralization-inspired crystallization process. The patterned octacalcium phosphate crystals have been obtained on poly(2-hydroxyethyl methacrylate) (PHEMA) matrix in the presence of poly(acrylic acid) (PAA). The patterned surface morphologies of the crystal thin films could be tuned by the amount of PAA additives. In addition, the rapid and topotactic transformation to hydroxyapatite (HAP) thin films with surface-ring structures has also been achieved. This study may provide new strategy toward the design of functional calcium phosphate-based thin-film hybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.