Abstract

This article aims at investigating the filtering abilities of periodic structures with nonlinear interconnected synchronized switch damping on inductor electrical networks. Periodic structures without electrical networks themselves naturally have the function of filtering since the structure response breaks into pass bands and stop bands when the structure is excited by an external force with multiple or varying frequencies. Introduction of linear electrical networks in the periodic structure makes stop bands of the structure wider than that of the structure without electrical networks. However, nonlinear piezoelectric electrical networks may have better effect on the mechanical wave attenuation than linear piezoelectric electrical networks in terms of frequency band. Therefore, this article proposes a piezoelectric periodic structure with nonlinear interconnected synchronized switch damping on short-circuit/synchronized switch damping on inductor electrical network. A transfer matrix formulation including the interconnected electrical network is also proposed for deriving the characteristics of elastic wave propagation. The results show that the proposed technique permits enhancing the damping abilities in particular frequency bands compared to electrically independent periodic cells, which, combined with structural tailoring, would allow achieving high damping performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.