Abstract

In this paper, a periodic structure of different dielectric layers is proposed and investigated for relativistic electron acceleration. The periodic dielectric structure provides an accelerating electric field inside the structure. Results show that the electron beam can experience a strong electric force in one direction during propagation in the structure, leading to the acceleration gradient increasing by more than double in comparison with dual-grating structures. Acceleration gradient enhancement occurs without increasing the electric field much inside the structure; therefore, the maximum achievable acceleration gradient and acceleration factor are increased by more than 100%, reaching 0.7. Thereby, by using the proposed structure GV/m, the acceleration gradient can be achieved with a wide electron channel. Also, the required input laser fluence is reduced for the same acceleration gradient. Acceleration gradient and acceleration factor optimization is done corresponding to structure parameters. Our work shows that the proposed structure helps to make dielectric laser accelerators more efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.