Abstract

Pattern formation is a frequent phenomenon occurring in animate and inanimate systems. The interplay between the mass transport of the chemical species and the underlying chemical reaction networks generates most patterns in chemical systems. Periodic precipitation is an emblematic example of reaction-diffusion patterns, in which the process generates a spatial periodic structure in porous media. Here, we use the dormant reagent method to produce colloidal particles of Prussian blue (PB) and PB analogues at the liquid-gel interface. The generated particles produced a stable periodic stratification pattern in time in the liquid phase placed on top of the solid hydrogel. The phenomenon is governed by periodic swelling of the gel driven by the osmotic stress and stability of the formed particles. To illustrate the phenomenon, we developed an extended reaction-diffusion model, which incorporated the gel swelling and sedimentation effect of the formed colloids and could qualitatively reproduce the pattern formation in the liquid phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.