Abstract
We have observed the configuration and motion of surface steps on the aperiodic icosahedral ($i$-) Al-Pd-Mn quasicrystal using low-energy electron microscopy and scanning tunneling microscopy. As the quasicrystal is cooled from high temperature, bulk vacancies migrate to the surface causing the surface to be etched. Surprisingly, this etching occurs by two types of steps with different heights moving in different directions with different velocities. The steady-state surface morphology is a uniformly spaced rhomboidal step network. This network requires that the layer stacking near the surface deviates from the bulk quasicrystal stacking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.