Abstract

We report an experimental study of a transition to periodic intermittency in pressure-driven pipe flows. The transition is preceded by a rapid increase of the intermittency factor with pressure. To model intermittent pressure-driven flows, we introduce a general model, where a fifth-order Ginzburg-Landau equation is coupled with a pressure-velocity relation that takes into account the frictional effect of the turbulence on the flow velocity. We determine the phase diagram and show that the model gives a qualitative understanding of the transition to periodic intermittency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.