Abstract

We prove the existence of infinitely many periodic solutions for periodically forced radially symmetric systems of second-order ODE’s, with a singularity of repulsive type, where the nonlinearity has a superlinear growth at infinity. These solutions have periods, which are large integer multiples of the period of the forcing, and rotate exactly once around the origin in their period time, while having a fast oscillating radial component. Analogous results hold in the case of an annular potential well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.