Abstract

This paper is concerned with the existence and stability of periodic solutions for reaction diffusion systems with nonlinear Neumann boundary conditions in a half-space domain. The approach to the problem is by the method of upper and lower solutions and the integral representation of its associated monotone iterations. This method leads to the existence of maximal and minimal periodic solutions which can be computed from a liner iterative process in the same fashion as for parabolic initial boundary value problems. A sufficient condition for the stability of a periodic solution is given and an application is also given to a plankton allelopathic model from aquatic ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.