Abstract

Existence of maximal and minimal periodic solutions of a coupled system of parabolic equations with time delays and with nonlinear boundary conditions is discussed. The proof of the existence theorem is based on the method of upper and lower solutions and its associated monotone iterations. This method is constructive and can be used to develop a computational algorithm for numerical solutions of the periodic-parabolic system. An application is given to a competitor-competitor-mutualist model which consists of a coupled system of three reaction-diffusion equations with time delays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.