Abstract

In this paper, we consider the existence of periodic solutions for discrete time periodic time-varying coupled systems on networks (DPTCSN). Some novel sufficient conditions are obtained to guarantee the existence of periodic solutions for DPTCSN, which have a close relation to the topology property of the corresponding network. Our approach is based on the continuation theorem of coincidence degree theory, generalized Kirchhoff’s matrix tree theorem in graph theory, Lyapunov method and some new analysis techniques. The approach is applied to the existence of periodic solutions for discrete time Cohen–Grossberg Neural Networks (CGNN). Finally, an example and numerical simulations are provided to illustrate the effectiveness of our theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call