Abstract

Incidence of whooping cough, an infection caused by Bordetella pertussis and Bordetella parapertussis, has been on the rise since the 1980s in many countries. Immunological interactions, such as immune boosting and cross-immunity between pathogens, have been hypothesised to be important drivers of epidemiological dynamics. We present a two-pathogen model of transmission which examines how immune boosting and cross-immunity can influence the timing and severity of epidemics. We use a combination of numerical simulations and bifurcation techniques to study the dynamical properties of the system, particularly the conditions under which stable periodic solutions are present. We derive analytic expressions for the steady state of the single-pathogen model, and give a condition for the presence of periodic solutions. A key result from our two-pathogen model is that, while studies have shown that immune boosting at relatively strong levels can independently generate periodic solutions, cross-immunity allows for the presence of periodic solutions even when the level of immune boosting is weak. Asymmetric cross-immunity can produce striking increases in the incidence and period. Our study underscores the importance of developing a better understanding of the immunological interactions between pathogens in order to improve model-based interpretations of epidemiological data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.