Abstract

We prove the existence and polynomial stability of periodic mild solutions for Boussinesq systems in critical weak-Morrey spaces for dimension n⩾3. Those systems are derived via the Boussinesq approximation and describe the movement of an incompressible viscous fluid under natural convection filling the whole space Rn. Using certain dispersive and smoothing properties of heat semigroups on Morrey-Lorentz spaces as well as Yamazaki-type estimate on block spaces, we prove the existence of bounded mild solutions for the linear systems corresponding to the Boussinesq systems. Then, we establish a Massera-type theorem to obtain the existence and uniqueness of periodic solutions to corresponding linear systems on the half line time-axis by using a mean-ergodic method. Next, using fixed point arguments, we can pass from linear systems to prove the existence uniqueness and polynomial stability of such solutions for Boussinesq systems. Finally, we apply the results to Navier-Stokes equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.