Abstract
In this paper, a predator–prey model with both constant rate harvesting and state dependent impulsive harvesting is analyzed. By using differential equation geometry theory and the method of successor functions, the existence, uniqueness and stability of the order one periodic solution have been studied. Sufficient conditions which guarantee the nonexistence of order k (k≥2) periodic solution are given. We also present that the system exhibits the phenomenon of homoclinic bifurcation under some parametric conditions. Finally, some numerical simulations and biological explanations are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.