Abstract
In this paper, we establish the existence and stability of periodic solutions for neutral-type differential equations with piecewise impulses on time scales. We first obtain some sufficient conditions for the existence of a unique periodic solution by using the Banach contraction mapping principle. We also prove the existence of at least one periodic solution using the Schauder fixed point theorem. In addition, we establish the stability results based on the existence of periodic solutions. It is worth noting that the results of this paper are based on time scales, so that they are applicable to continuous, discrete, and other types of systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.