Abstract
Abstract In this paper, we analyze the dynamics of a stochastic nonautonomous SIR epidemic model, in which population growth is subject to logistic growth in absence of disease. For the periodic system, we present sufficient conditions for persistence of the epidemic and in the case of persistence, by constructing some suitable Lyapunov functions, we show that there is at least one nontrivial positive periodic solution. One of the most important findings is that random perturbations may be beneficial to formate the periodic solution to the stochastic nonautonomous SIR epidemic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.