Abstract

The focus of this paper is on the development of time-delay filters to accomplish tracking of periodic signals with zero phase errors. The class of problems addressed include systems whose dynamics are characterized by lightly damped modes. A general approach for the zero-phase tracking of periodic inputs is presented followed by an illustration of single harmonic tracking of underdamped second-order systems with relative degree two. A general formulation of the approach is then posed for higher-order systems and systems including zeros. The paper concludes with the illustration of enforcing constraints to desensitize the time-delay filter to uncertainties in the location of the poles of the system and forcing frequencies. A numerical practical design case based on a medical X-ray system is used to illustrate the potential of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.