Abstract

Abstract This work presents numerical and experimental investigations of the application of a periodic array of resistive–inductive (RL) shunted piezoelectric patches for the attenuation of broadband noise radiated by a flexible plate in an enclosed cavity. A 4×4 lay-out of piezoelectric patches is bonded to the surface of a rectangular plate fully clamped to the top face of a rectangular cavity. Each piezo-patch is shunted through a single RL circuit, and all shunting circuits are tuned at the same frequency. The response of the resulting periodic structure is characterized by frequency bandgaps where vibrations and associated noise are strongly attenuated. The location and extent of induced bandgaps are predicted by the application of Bloch theorem on a unit cell of the periodic assembly, and they are controlled by proper selection of the shunting circuit impedance. A coupled piezo-structural-acoustic finite element model is developed to evaluate the noise reduction performance. Strong attenuation of multiple panel-controlled modes is observed over broad frequency bands. The proposed concept is tested on an aluminum plate mounted in a wooden box and driven by a shaker. Experimental results are presented in terms of pressure responses recorded using a grid of microphones placed inside the acoustic box.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.