Abstract

Benson and Goodearl [Periodic flat modules, and flat modules for finite groups, Pacific J. Math.196(1) (2000) 45–67] proved that if M is a flat module over a ring R such that there exists an exact sequence of R-modules 0 → M → P → M → 0 with P a projective module, then M is projective. The main purpose of this paper is to generalize this theorem to any exact sequence of the form 0 → M → G → M → 0, where G is an arbitrary module over R. Moreover, we seek counterpart entities in the Gorenstein homological algebra of pure projective and pure injective modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.