Abstract

Periodic rotations of a rigid body close to the flat motions were found. Their orbital stability was investigated. Analysis was done up to second order of the small parameter. It was proved that solutions found are orbitally stable except of the third order resonance case. This resonance do not appear if terms up to the first order of small parameter are considered only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.