Abstract

Coulomb forces between charged close-flying satellites can be used for formation control, and constant electric potentials enable static equilibria solutions. In this work, open-loop time-varying potential functions, which produce periodic, two-craft, Coulomb formation motions are demonstrated for the first time. This is done in the rotating Hill-Frame, with linearized gravity, and craft position components assumed in the form of simple harmonic oscillators. Substitution of the oscillatory functions into the dynamics, further constrains these functions, and yields necessary potential histories, to produce the periodic flow. The assumed position functions, however, are not arbitrary, since the dynamical model restricts what oscillatory trajectories are allowed. Specifically, a Hill-Frame integral of motion is derived, and this is used to show certain candidate periodic functions to be inadmissible. The system dynamics are then linearized to expose stability properties of the solutions, and it is established that asymptotic stability is impossible for all orbit families. Finally, the degree of instability in the assumed motions, over free parameter ranges, is determined numerically via the Floquet multipliers of the associated full-cycle state-transition matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.